Integrable Systems of Algebraic Origin and Separation of Variables
نویسندگان
چکیده
منابع مشابه
Separation of Variables for Quantum Integrable Systems on Elliptic Curves
Abstract. We extend Sklyanin’s method of separation of variables to quantum integrable models associated to elliptic curves. After reviewing the differential case, the elliptic Gaudin model studied by Enriquez, Feigin and Rubtsov, we consider the difference case and find a class of transfer matrices whose eigenvalue problem can be solved by separation of variables. These transfer matrices are a...
متن کاملSingularities of Integrable Systems and Algebraic Curves
We study the relationship between singularities of finite-dimensional integrable systems and singularities of the corresponding spectral curves. For the large class of integrable systems on matrix polynomials, which is a general framework for various multidimensional spinning tops, as well as Beauville systems, we prove that if the spectral curve is nodal, then all singularities on the correspo...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
Algebraic geometry and stability for integrable systems
In 1970s, a methodwas developed for integration of nonlinear equations bymeans of algebraic geometry. Starting froma Lax representationwith spectral parameter, the algebro-geometricmethod allows to solve the system explicitly in terms of theta functions of Riemann surfaces. However, the explicit formulas obtained in this way fail to answer qualitative questions such as whether a given singular ...
متن کاملImprimitively Generated Lie-algebraic Hamiltonians and Separation of Variables
Turbiner’s conjecture posits that a Lie-algebraic Hamiltonian operator whose domain is a subset of the Euclidean plane admits a separation of variables. A proof of this conjecture is given in those cases where the generating Lie-algebra acts imprimitively. The general form of the conjecture is false. A counter-example is given based on the trigonometric OlshanetskyPerelomov potential correspond...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Functional Analysis and Its Applications
سال: 2018
ISSN: 0016-2663,1573-8485
DOI: 10.1007/s10688-018-0242-3